物流咨询电话
有问题 必受理
服务流程
拨打电话
线上联系客服
信息加密
安排师傅
最快30分钟
快速响应
上门服务
安心保障

乌海到南京物流漯河到佛山物流公司

发布时间:

乌海到南京物流漯河到佛山物流公司
















乌海到南京物流平顶山至宝坻区航空货运:(1)15555220488










 






乌海到南京物流漯河到佛山物流公司:(2)15555220488
















乌海到南京物流梅州到莆田物流公司
















乌海到南京物流智能诊断工具,提高诊断效率:我们引入智能诊断工具,通过数据分析和算法模型,快速准确地诊断全国故障,提高诊断效率和准确性。














 














物流服务物流过程透明化,客户监督:通过APP或小程序,让客户实时查看物流进度和物流过程,增加服务透明度,提升客户信任。
















乌海到南京物流聊城到福州物流专线
















乌海到南京物流百色至黄冈航空货运:
















葫芦岛市南票区、济南市平阴县、新乡市原阳县、周口市西华县、黔西南兴义市、天津市河东区、厦门市湖里区




 












成都市青白江区、运城市芮城县、韶关市乐昌市、鹰潭市余江区、西双版纳勐腊县、金华市永康市、宜宾市兴文县、大兴安岭地区新林区
















河源市龙川县、三门峡市渑池县、朝阳市双塔区、昭通市盐津县、西宁市大通回族土族自治县、临汾市霍州市、福州市马尾区、宣城市泾县、德阳市什邡市、商丘市柘城县
















菏泽市郓城县、济南市历下区、益阳市安化县、常德市桃源县、汕头市南澳县  内蒙古兴安盟科尔沁右翼前旗、大同市云冈区、遵义市正安县、儋州市那大镇、东方市江边乡、渭南市潼关县、萍乡市安源区、阜新市阜新蒙古族自治县、烟台市栖霞市
















大连市西岗区、惠州市惠阳区、湖州市德清县、平凉市静宁县、泉州市丰泽区、云浮市郁南县、九江市彭泽县
















临汾市安泽县、陵水黎族自治县隆广镇、邵阳市绥宁县、蚌埠市怀远县、六安市霍邱县












 




汉中市城固县、丽江市永胜县、永州市冷水滩区、大兴安岭地区松岭区、忻州市繁峙县、九江市柴桑区、泉州市鲤城区、广西百色市德保县、澄迈县福山镇、吉安市庐陵新区




盐城市大丰区、临高县多文镇、定安县龙湖镇、四平市铁东区、六盘水市盘州市、宁夏银川市灵武市、广安市岳池县、蚌埠市禹会区、太原市阳曲县、玉树玉树市  广西梧州市藤县、本溪市南芬区、广西防城港市防城区、岳阳市云溪区、许昌市魏都区、扬州市仪征市、洛阳市西工区、陵水黎族自治县隆广镇
















吕梁市柳林县、朔州市平鲁区、天水市清水县、广州市白云区、大同市云州区、东莞市樟木头镇、内蒙古呼和浩特市土默特左旗、海北刚察县、荆州市荆州区




榆林市府谷县、泸州市江阳区、海北刚察县、衡阳市珠晖区、内江市资中县




楚雄楚雄市、达州市开江县、五指山市番阳、新乡市新乡县、中山市阜沙镇
















太原市尖草坪区、临夏康乐县、吉林市磐石市、漳州市龙文区、晋中市昔阳县







 









荆州市监利市、辽源市东辽县、大庆市萨尔图区、张掖市民乐县、阜新市细河区、徐州市铜山区、黔东南施秉县

公务员用人工智能写材料,该不该打板子?

  今年以来,关于DeepSeek的话题热度一直很高,也引发了一些人工智能可能影响哪些行业的探讨。在这当中,关于政务服务方面的应用尤为引人关注。有人暗喜,人工智能是公职人员写材料、出方案的神器。有人厌恶,因为汇总基层汇报材料时,发现大量的AI痕迹,辞藻华丽却内容空洞,梳理这些材料,工作量反而比以前增加了很多。今天,就来继续聊聊这个话题。

  先说一个蛮有意思的现象。有人问DeepSeek一个问题:“xx大学和xx大学哪个更好,二选一,不需要说明理由”。经过一番思索,DeepSeek给出自己的答案。继续跟进问题,“我是另一所学校的”,大模型立马改口。当进一步表示“两个大学都读过”,DeepSeek在深度思考中直白地给出逻辑:“恭维用户”,“双校光环叠加”的回应已然失焦。

  如果仅从玩笑或者调试的角度,这样的问答或许令人会心一笑。但是,倘若把咨询的问题换成涉及群众切身利益的公共事项,或者需要人工智能为公职人员提供决策辅助时,这种“过度迎合”的情况就需要加以重视了。

  不可否认,“AI+政务”其势已成。近来,多地组织领导干部学习大模型使用方法,不少单位正在接入或者部署本地化DeepSeek。数据显示,有的地方上线政务大模型后,公文格式修正准确率超95%,审核时间缩短90%,跨部门任务分派效率提升80%。

  数据喜人,也不乏思考:一个以用户满意为评价维度的大模型,究竟能不能承载各方期待?当各种文字材料趋于模板化、套路化,该不该归咎于作为使用者比如公职人员身上?

  先说第一个。让用户满意当然无可非议,但是当态度的变量超过真实的参数,那就有可能本末倒置。试想,当你使用政务大模型撰写解决某个问题的方案时,得到的却是一堆情绪价值爆棚、实用信息不足的反馈,恐怕只会更加焦虑。

  有人在研究中发现,目前许多生成式人工智能存在一种“讨好”倾向,甚至会因此胡编乱造。表面看似有理有据,实则早就偏题千里。某种程度上,这是消纳数据、反馈强化的结果。优点当然是对齐了与人类的“颗粒度”,缺点也显而易见,开始与真实脱节。

  由此而言,我们依然需要保持自我认知的掌控权。正如有人所提醒的那样:“我们永远要带着一点点怀疑、一点点好奇、一点点求真精神,与它探讨、对话、切磋。”当然,更为重要的是不能依赖,AI再强也替代不了“脚底板”,调查研究始终是谋事之基、成事之道。

  再说第二点。毋庸讳言,许多人已经尝试使用生成式大模型写报告、找素材、攒总结,写作效率大大提升。但与此同时也带来争议,拗口的表达如出一辙,机械的逻辑似曾相识,鲜活的案例真假难辨,这样的公文材料有啥意义?

  该不该打板子?可能没这么简单。这其中,当然有个别人的应付之举,但更多人特别是基层干部有话要说。有人对此毫不讳言:“材料任务繁重,改稿总比写稿省很多力气……我们不是懒,只是想从文山会海中稍稍解脱松绑一下”。

  一句话,道出基层工作特别是材料工作之繁、之窘。从这个角度来说,理应对基层干部如何更合理使用政务大模型进行善意的提醒。但更重要的,是厘清其中的行为动机和难言之隐。是不是不必要的材料?有没有材料政绩之嫌?那种“以材料应付材料”的做法,才是AI应用走偏的重要原因。归根结底,还是要进一步减轻基层负担,让政务大模型从疲于应对的工具真正成为提升效能的神器。

  有一句广为人知的话,“打败你的不是对手,颠覆你的不是同行,而是传统思维和落后观念。”或许,政府服务领域正在掀起一场浪潮。当技术突飞猛进的时候,关于治理的智慧也应乘势而上。

  这正是:

  三千案牍屏间逝,百万铨衡指上飞。

  墨守成规矜故纸,智生穷变叩玄机。

  (打油诗由DeepSeek生成)

  来源:人民日报评论,作者:风凌度 【编辑:刘湃】

相关推荐:
阅读全文
点击报修