发布时间:
乌兰察布到修文县物流黄石到昌都物流公司
乌兰察布到修文县物流株洲到长宁区物流公司:(1)15555220488(点击咨询)(2)15555220488(点击咨询)
乌兰察布到修文县物流湘潭到安康物流专线(1)15555220488(点击咨询)(2)15555220488(点击咨询)
乌兰察布到修文县物流揭阳到宁德物流公司
乌兰察布到修文县物流菏泽到长顺县物流公司
物流服务老客户专属优惠日,感恩回馈:设立老客户专属优惠日,为老客户提供更多优惠和福利,感恩回馈客户支持。
乌兰察布到修文县物流柳州到密云区物流专线
乌兰察布到修文县物流娄底到石家庄物流公司
广西南宁市横州市、酒泉市敦煌市、金华市东阳市、渭南市富平县、资阳市乐至县、淮北市杜集区、株洲市渌口区、万宁市三更罗镇
泸州市纳溪区、衡阳市衡阳县、锦州市黑山县、成都市彭州市、六安市舒城县、广西桂林市阳朔县、莆田市仙游县、赣州市瑞金市
安顺市普定县、丽江市宁蒗彝族自治县、成都市彭州市、东莞市厚街镇、驻马店市平舆县、南平市延平区、东莞市高埗镇
铜仁市印江县、马鞍山市含山县、中山市三角镇、乐东黎族自治县利国镇、内蒙古呼伦贝尔市陈巴尔虎旗、咸阳市永寿县
岳阳市岳阳楼区、成都市简阳市、兰州市西固区、毕节市织金县、清远市清城区、铁岭市铁岭县、开封市兰考县
广西桂林市雁山区、宜春市高安市、潍坊市安丘市、临汾市乡宁县、广安市邻水县、大同市天镇县
广西来宾市忻城县、娄底市娄星区、福州市仓山区、渭南市富平县、漳州市漳浦县、嘉峪关市文殊镇、清远市清城区
昌江黎族自治县七叉镇、大连市中山区、赣州市瑞金市、金华市金东区、常州市金坛区、晋中市太谷区、临汾市吉县、河源市连平县、德州市临邑县
宁德市古田县、驻马店市遂平县、重庆市梁平区、乐东黎族自治县千家镇、安阳市滑县、清远市清城区、南昌市安义县、安康市岚皋县、临汾市古县、常德市澧县
德州市齐河县、邵阳市城步苗族自治县、内蒙古赤峰市巴林左旗、泰州市靖江市、广西南宁市江南区、中山市横栏镇、重庆市云阳县、荆门市东宝区、日照市岚山区
东营市利津县、南昌市湾里区、乐东黎族自治县抱由镇、中山市沙溪镇、龙岩市长汀县、铜川市宜君县、汕尾市海丰县、焦作市解放区、十堰市郧阳区
新乡市卫滨区、镇江市京口区、黔东南锦屏县、绵阳市平武县、忻州市神池县、大理云龙县、周口市商水县
梅州市大埔县、上饶市余干县、凉山昭觉县、绍兴市上虞区、临沂市郯城县、潍坊市寿光市、临夏永靖县、绍兴市柯桥区、孝感市应城市
红河石屏县、抚州市南城县、榆林市榆阳区、泸州市合江县、张掖市山丹县、大同市平城区
马鞍山市当涂县、泸州市泸县、佛山市南海区、梅州市大埔县、广西南宁市江南区、宿迁市泗阳县、焦作市山阳区、烟台市栖霞市、上饶市婺源县、重庆市渝北区
雅安市名山区、儋州市白马井镇、内蒙古通辽市开鲁县、屯昌县南坤镇、衢州市江山市、三亚市崖州区、汉中市洋县
咸阳市秦都区、茂名市茂南区、儋州市东成镇、抚州市乐安县、周口市项城市
中国科研人员发布全球首个地震诱发滑坡近实时智能预测模型
中新社成都5月10日电(记者 贺劭清)记者10日从成都理工大学获悉,该校范宣梅教授团队基于过去50年来38次强震诱发的近40万处滑坡,建立了目前全球最大的地震诱发滑坡数据库,结合深度学习算法研发了全球首个地震诱发滑坡近实时智能预测模型。
该模型能够实现一分钟内预测全球任何地震诱发滑坡的空间概率,平均精度达82%。这一科研成果以《深度学习实现全球地震诱发滑坡预测》为题,于近日在国际顶级期刊《国家科学评论》发表。
过去的20年,全球强震频发,平均每月都会发生一次7.0级以上强震,累计夺去了约75万人的生命。强震诱发次生地质灾害是否具有普适性的发育分布规律和控制因素?是否可以建立一个适用于全球不同地质环境条件的强震诱发地质灾害预测模型?
面对这一地质灾害领域的国际前沿科学问题,中国科研人员从1970年以来全球范围内6.0级以上地震中筛选出38次典型事件,结合遥感智能识别与人工核验,解译了近40万处滑坡样本,建立了目前全球最大的地震诱发滑坡数据库,并将地震事件划分为环太平洋和阿尔卑斯—喜马拉雅两大地震带及寒带、温带与赤道带三大气候区,以提升不同区域地质环境条件下模型的泛化能力。
中国科研人员基于对强震诱发滑坡机理的认识,对17项影响因子进行了分析,发现地面峰值加速度、坡度与岩性是全球范围内地震诱发滑坡的主控因素。不同地震带—气候区的滑坡控制因子呈现显著空间分异性,反映了地质背景与气候外营力协同作用对滑坡动力过程的差异化影响。因此,模型采用“全球—区域双轨制”部署策略,充分优化网络参数的同时有效避免过拟合风险。
与传统机理和统计模型相比,此次推出的地震诱发滑坡近实时智能预测模型平均预测准确率达82%,比国际现有模型准确率提高了约20%,计算时间由原来的数天,缩短到小于1分钟,实现了地震诱发地质灾害的近实时预测。
中国科研人员计划未来将降雨预报和余震分析等更多触发条件纳入预测模型,同时结合人口、房屋、基础设施等数据,实现多因素驱动的地质灾害风险预测大模型,为全球防灾减灾提供中国方案。(完) 【编辑:张子怡】
相关推荐: